Weighted norm inequalities, Gaussian bounds and sharp spectral multipliers
نویسندگان
چکیده
منابع مشابه
On some sharp weighted norm inequalities
Given a weight , we consider the space ML which coincides with L p when ∈ Ap . Sharp weighted norm inequalities on ML for the Calderón–Zygmund and Littlewood–Paley operators are obtained in terms of the Ap characteristic of for any 1<p<∞. © 2005 Elsevier Inc. All rights reserved.
متن کاملSome inequalities involving lower bounds of operators on weighted sequence spaces by a matrix norm
Let A = (an;k)n;k1 and B = (bn;k)n;k1 be two non-negative ma-trices. Denote by Lv;p;q;B(A), the supremum of those L, satisfying the followinginequality:k Ax kv;B(q) L k x kv;B(p);where x 0 and x 2 lp(v;B) and also v = (vn)1n=1 is an increasing, non-negativesequence of real numbers. In this paper, we obtain a Hardy-type formula forLv;p;q;B(H), where H is the Hausdor matrix and 0 < q p 1. Also...
متن کاملSharp Bounds on the PI Spectral Radius
In this paper some upper and lower bounds for the greatest eigenvalues of the PI and vertex PI matrices of a graph G are obtained. Those graphs for which these bounds are best possible are characterized.
متن کاملWeighted Norm Inequalities
Introduction In the rst part of the paper we study integral operators of the form (1) Kf(x) = v(x) x Z 0 k(x; y)u(y)f(y) dy; x > 0; where the real weight functions v(t) and u(t) are locally integrable and the kernel k(x; y) 0 satisses the following condition: there exists a constant D 1 such that Standard examples of a kernel k(x; y) 0 satisfying (2) are (i) k(x; y) = (x ? y) , 0 (ii) k(x; y) =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 2011
ISSN: 0022-1236
DOI: 10.1016/j.jfa.2010.11.006